Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125.910
Filter
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693312

ABSTRACT

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Subject(s)
Breast Neoplasms , Cellular Senescence , Neutrophils , Piperazines , Pyridines , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Cellular Senescence/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Neutrophils/metabolism , Neutrophils/immunology , Neutrophils/drug effects , Cell Line, Tumor , Neutrophil Activation/drug effects , Tumor Microenvironment/drug effects
2.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719798

ABSTRACT

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Subject(s)
Breast Neoplasms , Down-Regulation , Epithelial-Mesenchymal Transition , RNA Polymerase I , Teniposide , Zinc Finger E-box Binding Homeobox 2 , Epithelial-Mesenchymal Transition/drug effects , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Cell Line, Tumor , Down-Regulation/drug effects , RNA Polymerase I/metabolism , Teniposide/pharmacology , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects
3.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Article in English | MEDLINE | ID: mdl-38722288

ABSTRACT

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Subject(s)
Breast Neoplasms , Organoids , Precision Medicine , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Organoids/drug effects , Organoids/pathology , Organoids/metabolism , Precision Medicine/methods , Animals , Xenograft Model Antitumor Assays , Mice , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor/methods , Middle Aged
4.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Article in English | MEDLINE | ID: mdl-38725852

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Subject(s)
Lipopolysaccharides , Neoplastic Stem Cells , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Female , Lipopolysaccharides/pharmacology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Signal Transduction , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Gene Expression Regulation, Neoplastic
5.
Int J Biol Sci ; 20(7): 2403-2421, 2024.
Article in English | MEDLINE | ID: mdl-38725848

ABSTRACT

Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.


Subject(s)
Breast Neoplasms , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Phosphorylation , Cell Line, Tumor , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Proto-Oncogene Proteins , MAP Kinase Kinase Kinases
6.
PLoS One ; 19(5): e0302856, 2024.
Article in English | MEDLINE | ID: mdl-38722955

ABSTRACT

Metastasis is the most dreaded outcome after a breast cancer diagnosis, and little is known regarding what triggers or promotes breast cancer to spread distally, or how to prevent or eradicate metastasis effectively. Bilateral breast cancers are an uncommon form of breast cancers. In our study, a percentage of bilateral breast cancers were clonally related based on copy number variation profiling. Whole exome sequencing and comparative sequence analysis revealed that a limited number of somatic mutations were acquired in this "breast-to-breast" metastasis that might promote breast cancer distant spread. One somatic mutation acquired was SIVA-D160N that displayed pro-metastatic phenotypes in vivo and in vitro. Over-expression of SIVA-D160N promoted migration and invasion of human MB-MDA-231 breast cancer cells in vitro, consistent with a dominant negative interfering function. When introduced via tail vein injection, 231 cells over-expressing SIVA-D160N displayed enhanced distant spread on IVIS imaging. Over-expression of SIVA-D160N promoted invasion and anchorage independent growth of mouse 4T1 breast cancer cells in vitro. When introduced orthotopically via mammary fat pad injection in syngeneic Balb/c mice, over-expression of SIVA-D160N in 4T1 cells increased orthotopically implanted mammary gland tumor growth as well as liver metastasis. Clonally related bilateral breast cancers represented a novel system to investigate metastasis and revealed a role of SIVA-D160N in breast cancer metastasis. Further characterization and understanding of SIVA function, and that of its interacting proteins, may elucidate mechanisms of breast cancer metastasis, providing clinically useful biomarkers and therapeutic targets.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Cell Line, Tumor , Neoplasm Invasiveness , Mutation , Cell Movement/genetics , Mice, Inbred BALB C , DNA Copy Number Variations
7.
PLoS One ; 19(5): e0302600, 2024.
Article in English | MEDLINE | ID: mdl-38722960

ABSTRACT

Breast cancer is the second most common cancer diagnosed in women in the US with almost 280,000 new cases anticipated in 2023. Currently, on-site pathology for location guidance is not available during the collection of breast biopsies or during surgical intervention procedures. This shortcoming contributes to repeat biopsy and re-excision procedures, increasing the cost and patient discomfort during the cancer management process. Both procedures could benefit from on-site feedback, but current clinical on-site evaluation techniques are not commonly used on breast tissue because they are destructive and inaccurate. Ex-vivo microscopy is an emerging field aimed at creating histology-analogous images from non- or minimally-processed tissues, and is a promising tool for addressing this pain point in clinical cancer management. We investigated the ability structured illumination microscopy (SIM) to generate images from freshly-obtained breast tissues for structure identification and cancer identification at a speed compatible with potential on-site clinical implementation. We imaged 47 biopsies from patients undergoing a guided breast biopsy procedure using a customized SIM system and a dual-color fluorescent hematoxylin & eosin (H&E) analog. These biopsies had an average size of 0.92 cm2 (minimum 0.1, maximum 4.2) and had an average imaging time of 7:29 (minimum 0:22, maximum 37:44). After imaging, breast biopsies were submitted for standard histopathological processing and review. A board-certified pathologist returned a binary diagnostic accuracy of 96% when compared to diagnoses from gold-standard histology slides, and key tissue features including stroma, vessels, ducts, and lobules were identified from the resulting images.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Female , Breast/pathology , Breast/diagnostic imaging , Biopsy/methods , Microscopy/methods
8.
Sci Rep ; 14(1): 10632, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724585

ABSTRACT

While some clinics have adopted abbreviated neoadjuvant treatment for HER2-positive breast cancer, there remains a shortage of comprehensive clinical data to support this practice. This is a retrospective, multicenter study. A total of 142 patients were included in the study who are HER2-positive breast cancer, aged ≤ 65 years, with left ventricular ejection fraction ≥ 50%, received neoadjuvant chemotherapy and underwent surgery at 10 different oncology centers in Türkiye between October 2016 and December 2022. The treatment arms were divided into 4-6 cycles of docetaxel/trastuzumab/pertuzumab for arm A, 4 cycles of adriamycin/cyclophosphamide followed by 4 cycles of taxane/TP for arm B. There were 50 patients (35.2%) in arm A and 92 patients (64.8%) in arm B. The median follow-up of all of the patients was 19.9 months (95% CI 17.5-22.3). The 3-year DFS rates for treatment arms A and B were 90.0% and 83.8%, respectively, and the survival outcomes between the groups were similar (p = 0.34). Furthermore, the pathologic complete response rates were similar in both treatment arms, at 50.0% and 51.1%, respectively (p = 0.90). This study supports shortened neoadjuvant treatment of HER2-positive breast cancer, a common practice in some clinics.


Subject(s)
Anthracyclines , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Trastuzumab , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Middle Aged , Neoadjuvant Therapy/methods , Receptor, ErbB-2/metabolism , Anthracyclines/therapeutic use , Anthracyclines/administration & dosage , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Trastuzumab/therapeutic use , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Docetaxel/therapeutic use , Docetaxel/administration & dosage , Taxoids/therapeutic use , Taxoids/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Bridged-Ring Compounds/therapeutic use , Bridged-Ring Compounds/administration & dosage , Treatment Outcome , Aged , Antibodies, Monoclonal, Humanized
9.
World J Surg Oncol ; 22(1): 127, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725006

ABSTRACT

Sentinel node biopsy (SNB) is routinely performed in people with node-negative early breast cancer to assess the axilla. SNB has no proven therapeutic benefit. Nodal status information obtained from SNB helps in prognostication and can influence adjuvant systemic and locoregional treatment choices. However, the redundancy of the nodal status information is becoming increasingly apparent. The accuracy of radiological assessment of the axilla, combined with the strong influence of tumour biology on systemic and locoregional therapy requirements, has prompted many to consider alternative options for SNB. SNB contributes significantly to decreased quality of life in early breast cancer patients. Substantial improvements in workflow and cost could accrue by removing SNB from early breast cancer treatment. We review the current viewpoints and ideas for alternative options for assessing and managing a clinically negative axilla in patients with early breast cancer (EBC). Omitting SNB in selected cases or replacing SNB with a non-invasive predictive model appear to be viable options based on current literature.


Subject(s)
Axilla , Breast Neoplasms , Sentinel Lymph Node Biopsy , Humans , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Sentinel Lymph Node Biopsy/methods , Prognosis , Neoplasm Staging , Lymph Nodes/pathology , Lymph Nodes/surgery , Lymphatic Metastasis , Mastectomy/methods , Quality of Life
10.
World J Surg Oncol ; 22(1): 126, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725003

ABSTRACT

PURPOSE: This study investigated the changes in the fasting blood glucose (FBG), fasting triglyceride (FTG), and fasting total cholesterol (FTC) levels during neoadjuvant therapy (NAT) for human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and the association with pathologic complete response (pCR). METHODS: Relevant data from Sichuan Cancer Hospital from June 2019 to June 2022 were collected and analyzed, and FBG, FTG, and FTC were divided into baseline, change, and process groups, which were grouped to analyze the changes after receiving NAT and the association with pCR. RESULTS: In the estrogen receptor (ER)-negative subgroup, patients with low levels of FTG in the process group were more likely to achieve pCR compared to high levels, and in the progesterone receptor (PR)-negative subgroup, patients with lower FTG compared to higher FTG after receiving NAT was more likely to achieve pCR. CONCLUSIONS: Patients with HER2-positive BC undergoing NAT develop varying degrees of abnormalities (elevated or decreased) in FBG, FTG, and FTC; moreover, the status of FTG levels during NAT may predict pCR in ER-negative or PR-negative HER2-positive BC.Early monitoring and timely intervention for FTG abnormalities may enable this subset of patients to increase the likelihood of obtaining a pCR along with management of abnormal markers.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Receptor, ErbB-2/metabolism , Neoadjuvant Therapy/methods , Middle Aged , Prognosis , Biomarkers, Tumor/metabolism , Follow-Up Studies , Blood Glucose/analysis , Blood Glucose/metabolism , Adult , Receptors, Estrogen/metabolism , Triglycerides/blood , Triglycerides/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Receptors, Progesterone/metabolism , Cholesterol/metabolism , Cholesterol/blood , Aged , Pathologic Complete Response
11.
Womens Health (Lond) ; 20: 17455057241250131, 2024.
Article in English | MEDLINE | ID: mdl-38725253

ABSTRACT

BACKGROUND: Breast cancer is prevalent worldwide, with disparities in screening, diagnosis, treatment outcomes, and survival. In Africa, the majority of women are diagnosed at advanced stages, affecting treatment outcomes. Screening is one of the best strategies to reduce mortality rates caused by this cancer. Yet in a resource-constrained setting, there is limited access to screening and early detection services, which are available only at a few referral hospitals. OBJECTIVES: We aimed to evaluate the prevalence and screening results of breast cancer using clinical breast examination coupled with fine needle aspiration cytology in a resource-constraint setting. DESIGN: A combined cross-sectional and cohort study. METHODS: Women at risk of developing breast cancer in the Kilimanjaro region of Tanzania were invited, through public announcements, to their primary healthcare facilities. A questionnaire was used to assess the participants' characteristics. The women received a clinical breast examination, and detectable lesions were subjected to a confirmatory fine needle aspiration cytology or an excisional biopsy. Preliminary data from this ongoing breast cancer control program were extracted and analyzed for this study. RESULTS: A total of 3577 women were screened for breast cancer; their mean age was 47 ± 7.53 years. About a third of them (1145, 32%) were practicing self-breast examination at least once a month. Of 200 (5.6%) with abnormal clinical breast examination, 18 (9%) were confirmed to be breast cancer, making the prevalence to be 0.5%. The vast majority of participants with breast cancer (13, 72.2%) had early disease stages, and infiltrating ductal carcinoma, no special type, was the most common (15, 83.3%) histopathology subtype. Hormonal receptor status determination results indicated that 11 (61.1%), 7 (38.9%), and 5 (27.8%) of the tumors overexpressed estrogen receptor, progesterone receptor, and human epidermal receptor-2, respectively. CONCLUSION: Our study demonstrates 5.6% of Tanzanian women have abnormal clinical breast examination findings, with 9% having breast cancer. Nearly three-quarters (72.2%) of breast cancer screened for early disease were detected in the early disease stages. This finding suggests that organized screening with clinical breast examination coupled with fine needle aspiration cytology, which is a simple and cost-effective screening method, has the potential to improve early detection and outcomes for breast cancer patients in a resource-constraint setting.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/epidemiology , Breast Neoplasms/diagnosis , Cross-Sectional Studies , Biopsy, Fine-Needle , Tanzania/epidemiology , Middle Aged , Early Detection of Cancer/methods , Adult , Cohort Studies , Physical Examination , Mass Screening/methods , Prevalence , Aged , Cytology
12.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Article in English | MEDLINE | ID: mdl-38725284

ABSTRACT

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Prognosis , Endoplasmic Reticulum Stress/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Computational Biology/methods , Databases, Genetic , ROC Curve , Kaplan-Meier Estimate , Transcriptome
13.
J Pak Med Assoc ; 74(4 (Supple-4)): S43-S48, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712408

ABSTRACT

This narrative review explores the transformative potential of Artificial Intelligence (AI) and advanced imaging techniques in predicting Pathological Complete Response (pCR) in Breast Cancer (BC) patients undergoing Neo-Adjuvant Chemotherapy (NACT). Summarizing recent research findings underscores the significant strides made in the accurate assessment of pCR using AI, including deep learning and radiomics. Such AI-driven models offer promise in optimizing clinical decisions, personalizing treatment strategies, and potentially reducing the burden of unnecessary treatments, thereby improving patient outcomes. Furthermore, the review acknowledges the potential of AI to address healthcare disparities in Low- and Middle-Income Countries (LMICs), where accessible and scalable AI solutions may enhance BC management. Collaboration and international efforts are essential to fully unlock the potential of AI in BC care, offering hope for a more equitable and effective approach to treatment worldwide.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Breast Neoplasms/therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Neoadjuvant Therapy/methods , Deep Learning , Chemotherapy, Adjuvant
14.
J Pak Med Assoc ; 74(4 (Supple-4)): S72-S78, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712412

ABSTRACT

Radio genomics is an exciting new area that uses diagnostic imaging to discover genetic features of diseases. In this review, we carefully examined existing literature to evaluate the role of artificial intelligence (AI) and machine learning (ML) on dynamic contrastenhanced MRI (DCE-MRI) data to distinguish molecular subtypes of breast cancer (BC). Implications to noninvasive assessment of molecular subtype include reduction in procedure risks, tailored treatment approaches, ability to examine entire lesion, follow-up of tumour biology in response to treatment and evaluation of treatment resistance and failure secondary to tumour heterogeneity. Recent studies leverage radiomics and AI on DCE-MRI data for reliable, non-invasive breast cancer subtype classification. This review recognizes the potential of AI to predict the molecular subtypes of breast cancer non-invasively.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Contrast Media , Magnetic Resonance Imaging , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Female , Machine Learning
15.
J Pak Med Assoc ; 74(4 (Supple-4)): S109-S116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712418

ABSTRACT

Breast Cancer (BC) has evolved from traditional morphological analysis to molecular profiling, identifying new subtypes. Ki-67, a prognostic biomarker, helps classify subtypes and guide chemotherapy decisions. This review explores how artificial intelligence (AI) can optimize Ki-67 assessment, improving precision and workflow efficiency in BC management. The study presents a critical analysis of the current state of AI-powered Ki-67 assessment. Results demonstrate high agreement between AI and standard Ki-67 assessment methods highlighting AI's potential as an auxiliary tool for pathologists. Despite these advancements, the review acknowledges limitations such as the restricted timeframe and diverse study designs, emphasizing the need for further research to address these concerns. In conclusion, AI holds promise in enhancing Ki-67 assessment's precision and workflow efficiency in BC diagnosis. While challenges persist, the integration of AI can revolutionize BC care, making it more accessible and precise, even in resource-limited settings.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Ki-67 Antigen , Workflow , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Ki-67 Antigen/metabolism , Female , Biomarkers, Tumor/metabolism
16.
J Pak Med Assoc ; 74(4 (Supple-4)): S117-S125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38712419

ABSTRACT

In the dynamic landscape of Breast Cancer (BC), Oligo- Metastatic Breast Cancer (OMBC) presents unique challenges and opportunities. This comprehensive review delves into current strategies for addressing OMBC, covering locoregional and site-specific metastasis management, and addressing both surgical and minimally invasive therapies as essential components. Moreover, the transformative role of Artificial Intelligence (AI) is spotlighted. However, while the future looks promising, several limitations need addressing, including the need for further research, especially in diverse patient populations and resource-challenged settings. AI implementation may require overcoming the lack of Electronic Health Records acceptance in resource-challenged countries, which contributes to a scarcity of large datasets for AI training. As AI continues to evolve, validation and regulatory aspects must be continually addressed for seamless integration into clinical practice. In summary, this review outlines the evolving landscape of OMBC management, emphasizing the need for comprehensive research, global collaboration, and innovative AI solutions to enhance patient care and outcomes.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Female , Neoplasm Metastasis
17.
Sci Rep ; 14(1): 10753, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730248

ABSTRACT

This paper proposes an approach to enhance the differentiation task between benign and malignant Breast Tumors (BT) using histopathology images from the BreakHis dataset. The main stages involve preprocessing, which encompasses image resizing, data partitioning (training and testing sets), followed by data augmentation techniques. Both feature extraction and classification tasks are employed by a Custom CNN. The experimental results show that the proposed approach using the Custom CNN model exhibits better performance with an accuracy of 84% than applying the same approach using other pretrained models, including MobileNetV3, EfficientNetB0, Vgg16, and ResNet50V2, that present relatively lower accuracies, ranging from 74 to 82%; these four models are used as both feature extractors and classifiers. To increase the accuracy and other performance metrics, Grey Wolf Optimization (GWO), and Modified Gorilla Troops Optimization (MGTO) metaheuristic optimizers are applied to each model separately for hyperparameter tuning. In this case, the experimental results show that the Custom CNN model, refined with MGTO optimization, reaches an exceptional accuracy of 93.13% in just 10 iterations, outperforming the other state-of-the-art methods, and the other four used pretrained models based on the BreakHis dataset.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Breast Neoplasms/classification , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Algorithms
18.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731813

ABSTRACT

Increased expression and nuclear translocation of ß-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting ß-CATENIN are not as efficient as desired. Therefore, detailed understanding of ß-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing ß-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of ß-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce ß-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces ß-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on ß-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced ß-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding ß-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.


Subject(s)
Breast Neoplasms , Protein Stability , beta Catenin , Humans , beta Catenin/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Phosphorylation , Female , Cell Line, Tumor , Smad4 Protein/metabolism , Smad4 Protein/genetics , Gene Expression Regulation, Neoplastic , MCF-7 Cells , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Protein 2/metabolism
19.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731840

ABSTRACT

Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Exosomes , Tumor Microenvironment , Humans , Exosomes/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Female , Biomarkers, Tumor/metabolism , Prognosis , Cell Communication , Drug Resistance, Neoplasm , Drug Delivery Systems/methods , Animals
20.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692097

ABSTRACT

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Transcription Factors , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Neoplasm Recurrence, Local/immunology , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Cell Line, Tumor , Epithelial Cells/immunology , Epithelial Cells/metabolism , Animals , RNA, Double-Stranded/immunology , Transcription Factor RelA/metabolism , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...